LESSON PLAN, Winter-2025

Department: MECHANICAL ENGINEERING

Semester:-5Th

Name of the Faculty: Jagajyoti Sahu HOD(Mech.)

Subject: DESIGNE OF MACHINE ELEMENT

No of Periods per week allotted=03

	rerious per week anotteu-05					
WEEK	Period	MODULE	TOPIC	Remark		
1 ST	1 ST	1.1	Introduction of Machine design.			
			Classification of Machine design.			
	2 rd	1.2	Different Mechanical Engineering material with			
			their use.			
	3 th	1.2	Mechanical and physical property of material.			
2 nd	1st	1.3	Define working stress, yield stress, ultimate stress			
			and factor of safety.			
			Stress, strain curve for MS and CI.			
	2 nd	1.4	Modes of failure by elastic deflection.			
	3 rd	1.4	Modes of failure by general yielding and fracture.			
3rd	1 st	1.5	State the factors governing of machine element.			
	2 nd	1.6	General considerations in machine design.			
			General procedure in machine design.			
	3 rd	1.6	Unit of (fundamental and derive unit).			
4th	1 st	2.1	What is joint and type of joint.			
			Classification of joint.			
	2 nd	2.2	State type of welding joint.			
	3 rd	2.3	State advantage of welded joint over other joints.			
5th	1 st	2.4	Design of welded joint and symbol.			
			Derivation on eccentric load.			
	2 nd	2.5	State type of riveted joint and type of rivet.			
	3 rd	2.6	Describe failure of riveted joints.			
6th	1 st	2.7	Determine strength and efficiency of riveted joint.			
			Numerical on strength and efficiency of riveted			
			joints.			
	2 nd	2.8	Design riveted joints for pressure vessel.			
	3 rd	2.9	Numerical on welding joint and riveted joints.			
7th	1 st	3.1	State function of shafts.			
		3.2	State material for shaft and design of hollow and			
		3.3	solid shaft.			
	2 nd	3.3	Design of solid and hollow shaft to transmit a given			
			power at given rpm based on.			
	3 rd	3.3	(a)strength, (b)rigidity.			
8th	1 st	3.4	State standard size of shaft as per IS.			
		3.5	State function of key, type of key & material of key.			
	2 nd	3.6	Describe failure of key and effect of key way.			
		3.7	Design of rectangular sunk key by using empirical re			
			relation for given diameter of shaft.			
	3 rd	3.8	Design of rectangular sunk key of shear and			
			crushing stress.			

	1 st	3.9	State specification of parallel key, gib head key,	
			taper key as per IS.	
	2 nd	3.10	Numerical on key design.	
9th	3 rd	3.10	Numerical on failure of key effect of key way.	
10 th	1 st	4.1	Design of shaft coupling.	
		4.2	Requirement of good shaft coupling.	
	2 nd	4.3	Type of coupling.	
	3 rd	4.4	Design of sleeve or muff-coupling.	
11 th	1 st	4.4	Numerical on sleeve and muff-coupling.	
	2 nd	4.5	Design of clamp or compression coupling.	
	3 rd	4.5	Numerical on clamper compression coupling.	
			Flange coupling.	
12 th	1 st	4.5	Numerical on flange coupling.	
	2 nd	4.5	Design of flexible coupling.	
			Numerical on flexible coupling.	
	3 rd	4.6	Numerical on coupling.	
13 th	1 st	5.1	Material used for helical spring.	
			Application of spring and type of spring.	
	2 nd	5.2	Standard size spring wire (SWG).	
	3 rd	5.3	Term used in compression spring.	
14 th	1 st	5.3	End connection for compression helical springs.	
	2 nd	5.4	Stress on helical spring of circular wire.	
			Numerical on stress on helical spring of a circular	
			wire.	
	3 rd	5.5	Deflection of helical spring on circular wire.	
15th	1 st	5.5	Numerical on deflection of helical spring on circular	
			wire.	
	2 nd	5.6	Surge in spring.	
			Numerical on surge spring.	
	3 rd	5.7	Solve numerical on design of closed coil helical	
			compression spring.	
16th	1 st	2.7, 2.9	Numerical Problems	
	2 nd	3.10, 4.4	Numerical Problems	
	3 rd	4.5, 4.6	Numerical Problems	
17th	1 st	5.4, 5.5	Numerical Problems	
	2 nd	5.6	Numerical Problems	
	3 rd	5.7	Numerical Problems	